ARTICULAR-EMINENCE MEASUREMENTS PERFORMED BY CONVENTIONAL AND THREE-DIMENSIONAL METHOD

KRANJČIĆ JOSIP¹, ŠLAUS MARIO², ČATLAK ZLATKO³, PERŠIĆ SANJA¹, VOJVODIĆ DENIS¹

¹ School of Dental Medicine, University of Zagreb, Croatia ² Anthropological Centre, Croatian Academy of Sciences and Arts, Zagreb, Croatia ³ Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia

PURPOSE

Articular eminence (AE) morphology could be expressed by dimensions and angles measured by different methods. The aim of this study was to compare conventional two-dimensional with threedimensional laser method.

MATERIALS AND METHODS

The study was carried out on 20 human dry skulls (18 to 65 years)

RESULTS

Although small differences existed between AE measurements performed by conventional and threedimensional laser technology, most of obtained differences (Tables 1 - 10) were not statistically significant (p values: AE inclination 0.003 to 1.0; AE height 0.012 to 1.0; curved line length of 0.115 to 1.0). Differences between AE inclination values measured by "best fit line" method and "fossa roof - eminence top" method were statistically significant (p<0.001).

from medieval and contemporary period. Measurements were performed on sections (real and virtual) through the AE silicone impressions (lateral-medial) using two-dimensional and threedimensional (laser) digitalization. First section was the most lateral section through the silicone impression. AE inclination (first method (M1) "fossa roof – eminence top" and second method (M2) "best fit *line"* method) in relation to the Frankfurt horizontal, AE height and the length of curved line (highest to the lowest AE point) were measured (Figures 1-6). Results were statistically analyzed with significance level of 0.05

Figure 1. AE inclination measurement by conventional (two-dimensional) method in VistaMetrix software.

Figure 2. AE inclination measurement by conventional

Line parallel to Frankfurt horizontal p

Best fit line" method

Table 1. Statistical parameters of AE measurements on first section, right (N-number of specimens; SD-standard deviation; p-p value; I1-AE inclination, first method; I2-AE inclination, second method; H-AE height, L-AE curved line length, R-right side).

	Variables		Ν	Mean	SD	р
	l1R	CONVENTIONAL	20	30,230	4,430	0 824
NO	(degrees)	LASER	20	30,250	4,590	0,024
FIRST SECTIO	I2R	CONVENTIONAL	20	47,610	5,240	0 167
	(degrees)	LASER	20	47,890	5,490	0,107
	HR	CONVENTIONAL	20	5,280	1,160	1 000
	(mm)	LASER	20	5,270	7,540	1,000
	LR	CONVENTIONAL	20	10,770	1,550	0 115
	(mm)	LASER	20	10,830	13,470	0,115

Table 2. Statistical parameters of AE measurements on second section, right (N-number of specimens; SD-standard deviation; p-p value; I1-AE inclination, first method; I2-AE inclination, second method; H-AE height, L-AE curved line length, R-right side).

	١	/ariables	Ν	Mean	SD	р
	I1R	CONVENTIONAL	20	33,800	3,930	0 502
NOI	(degrees)	LASER	20	33,830	4,050	0,000
ECT	I2R	CONVENTIONAL	20	54,350	10,420	0 012*
D SI	(degrees)	LASER	20	54,520	10,270	0,012
NO	HR	CONVENTIONAL	20	6,520	1,020	0 115
SEC	(mm)	LASER	20	6,570	0,960	0,115
	LR	CONVENTIONAL	20	12,420	1,650	0 824
	(mm)	LASER	20	12,520	1,660	0,024

Table 6. Statistical parameters of AE measurements on first section, left (N-number of specimens; SD-standard deviation; p-p value; I1-AE inclination, first method; I2-AE inclination, second method; H-AE height, L-AE curved line length, L-left side).

	Variables		Ν	Mean	SD	р
	I1L	CONVENTIONAL	20	33,020	4,320	0 001
N	(degrees)	LASER	20	33,110	4,510	0,024
SECTIC	12L	CONVENTIONAL	20	50,040	7,780	0 0/1*
	(degrees)	LASER	20	50,240	7,900	0,041
ST	HL	CONVENTIONAL	20	5,760	0,960	0 262
RIT RIT	(mm)	LASER	20	5,750	1,170	0,203
	LL	CONVENTIONAL	20	11,120	2,190	1 000
	(mm)	LASER	20	11,130	2,290	1,000

Table 7. Statistical parameters of AE measurements on second section, left (N-number of specimens; SD-standard deviation; p-p value; I1-AE inclination, first method; I2-AE inclination, second method; H-AE height, L-AE curved line length, L-left side).

	١	/ariables	Ν	Mean	SD	р
	I1L	CONVENTIONAL	20	33,680	5,060	0 0/1*
NOI	(degrees)	LASER	20	33,940	5,060	0,041
D SECT	12L	CONVENTIONAL	20	56,120	12,310	0 263
	(degrees)	LASER	20	56,270	12,330	0,203
NO	HL	CONVENTIONAL	20	6,490	1,080	0 012*
SEC	(mm)	LASER	20	6,630	1,030	0,012
	LL	CONVENTIONAL	20	12,610	1,300	1 000
	(mm)	LASER	20	12,190	2,790	1,000

Table 3. Statistical parameters of AE measurements on third section, right (N-number of specimens; SD-standard deviation; p-p value; I1-AE inclination, first method; I2-AE inclination, second method; H-AE height, L-AE curved line length, R-right side).

Table 8. Statistical parameters of AE measurements on third section, left (N-number of specimens; SD-standard deviation; p-p value; I1-AE inclination, first method; I2-AE inclination, second method; H-AE height, L-AE curved line length, L-left side).

Figure 3. AE height measurement by conventional (twodimensional) method in VistaMetrix software.

Figure 4. AE curved line length measurement by conventional (two-dimensional) method in VistaMetrix software.

	Variables		Ν	Mean	SD	р
	l1R	CONVENTIONAL	20	35,410	4,440	1 000
	(degrees)	LASER	20	35,100	4,190	1,000
	I2R	CONVENTIONAL	20	57,270	10,330	0 115
	(degrees)	LASER	20	57,250	10,470	0,115
	HR	CONVENTIONAL	20	7,300	1,050	0 262
	(mm)	LASER	20	7,230	1,030	0,203
	LR	CONVENTIONAL	20	13,340	1,170	0 502
	(mm)	LASER	20	13,360	1,140	0,000

Table 4. Statistical parameters of AE measurements on fourth section, right (N-number of specimens; SD-standard deviation; p-p value; I1-AE inclination, first method; I2-AE inclination second method; H-AE height, L-AE curved line length, R-right side).

	Variables		N	Mean	SD	р
	I1R	CONVENTIONAL	20	34,400	4,760	0 824
NOI	(degrees)	LASER	20	34,440	4,610	0,024
ECT	I2R	CONVENTIONAL	20	57,940	8,710	0 262
H SI	(degrees)	LASER	20	57,580	9,520	0,203
JRT	HR	CONVENTIONAL	20	7,080	1,000	0 167
F0L	(mm)	LASER	20	7,020	0,950	0,107
	LR	CONVENTIONAL	20	13,180	1,440	1 000
	(mm)	LASER	20	13,170	1,390	1,000

	١	/ariables	Ν	Mean	SD	р
	11L	CONVENTIONAL	20	36,800	4,710	0 502
NC	(degrees)	LASER	20	36,720	4,720	0,000
SECTIC	12L	CONVENTIONAL	20	60,140	12,260	0 1 1 5
	(degrees)	LASER	20	60,580	12,230	0,110
IRD	HL	CONVENTIONAL	20	7,560	0,980	0 263
Ξ	(mm)	LASER	20	7,600	1,030	0,203
	LL	CONVENTIONAL	20	13,480	1,630	0 503
	(mm)	LASER	20	13,530	1,590	0,000

Table 9. Statistical parameters of AE measurements on fourth section, left (N-number of specimens; SD-standard deviation; p-p value; I1-AE inclination, first method; I2-AE inclination, second method; H-AE height, L-AE curved line length, L-left side).

	Variables		Ν	Mean	SD	р
	I1L	CONVENTIONAL	20	35,980	4,360	0 263
NOI	(degrees)	LASER	20	36,110	4,190	0,203
I SECT	12L	CONVENTIONAL	20	61,180	10,780	0 815
	(degrees)	LASER	20	60,990	10,760	0,013
IRT	HL	CONVENTIONAL	20	7,410	0,880	0.815
	(mm)	LASER	20	7,500	0,910	0,013
	LL	CONVENTIONAL	20	13,530	1,120	0 115
	(mm)	LASER	20	13,650	1,210	0,110

Table 5. Statistical parameters of AE measurements on fifth section, right (N-number of specimens; SD-standard deviation; p-p value; I1-AE inclination, first method; I2-AE inclination,

Table 10. Statistical parameters of AE measurements on fifth section, left (N-number of specimens; SD-standard deviation; p-p value; I1-AE inclination, first method; I2-AE inclination, second method; H-AE height, L-AE curved line length, L-left side).

Figure 5. Three-dimensional laser scan of AE silicone impression.

Figure 6. AE measurements on virtual sections through the three-dimensional laser scan of AE silicone impression.

second method; H-AE height, L-AE curved line length, R-right side).

	Variables		Ν	Mean	SD	р
	I1R	CONVENTIONAL	20	33,470	5,540	0.824
NC	(degrees)	LASER	20	33,440	5,580	0,024
CTIC	I2R	CONVENTIONAL	20	53,450	9,590	0 0/1*
SE((degrees)	LASER	20	53,680	9,590	0,041
HT:	HR	CONVENTIONAL	20	6,030	1,180	0 0/1*
E	(mm)	LASER	20	6,190	1,240	0,041
	LR	CONVENTIONAL	20	11,970	1,640	0 503
	(mm)	LASER	20	11,860	1,590	0,000

	١	/ariables	Ν	Mean	SD	р
	I1L	CONVENTIONAL	20	36,020	6,070	0 002*
NC	(degrees)	LASER	20	36,320	5,980	0,003
FIFTH SECTIC	12L	CONVENTIONAL	20	58,500	12,750	0.263
	(degrees)	LASER	20	58,150	11,850	0,203
	HL	CONVENTIONAL	20	6,790	9,400	1 000
	(mm)	LASER	20	6,760	1,090	1,000
	LL	CONVENTIONAL	20	12,070	1,380	0.824
	(mm)	LASER	20	12,160	1,320	0,024

CONCLUSIONS

Silicone impressions eased the procedure and retained accuracy for AE measurements. Differences for most of the performed measurements by conventional and three-dimensional method were not significant, thus indicating same reliability of the used methods. AE values by "best fit line" method were higher than by "fossa roof-eminence top" method no matter which measuring method was used. These values are more affected by the eminence height thus representing simplified but actual condylar path significant for adjustment of articulators.